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boundary layer

By MEIHONG SUN AND SETH LICHTER
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA

(Received 6 January 2002 and in revised form 19 December 2002)

A two-dimensional inviscid flow with piecewise-uniform regions of vorticity is studied
as a model of the high-Reynolds-number mixing between a boundary layer and an
outer layer. It is found that an initial disturbance to the boundary-layer thickness
breaks down into a wave field plus, if the initial disturbance is steep enough, a
volume of entrained fluid. The entrained fluid is drawn from the outer layer and
then folded into a crevice. The crevice stretches, and eventually pinches off, becoming
completely enveloped within the boundary layer. Though the entrained fluid is slender
in shape, its volume is significant. Very steep disturbances result in detrainment, in
which a small parcel of fluid detaches from the boundary layer and curls into the
outer layer. The v-velocity field agrees with many features of Kovasznay et al.’s
(1970) measurements in the turbulent boundary layer. This correspondence with
fully turbulent flow, plus the characteristics of folding and stretching large volumes
of fluid, make the process presented here a candidate for a mechanism by which
high-Reynolds-number boundary layers mix with outer-layer fluid.

1. Introduction
At high Reynolds numbers, a boundary layer is bounded by a contorted curve.

When boundary-layer fluid is dyed to differentiate it from the irrotational flow,
flow visualization frequently reveals outer-layer fluid poking deeply into or being
completely enveloped within the boundary layer, as well as spires of boundary layer
fluid protruding into the outer flow (see figure 1). These intrusions suggest transport
due to a convective as opposed to a diffusive mechanism.

To better understand how this type of high-Reynolds-number mixing occurs, we
use a model based on formulations of two-dimensional inviscid flow consisting of
piecewise-uniform regions of vorticity. The interface between regions of constant
vorticity coincides with vorticity jumps. For inviscid flow, the vorticity in each region
is invariant (due to Kelvin’s theorem), and so the velocity field can be expressed in
terms of contour integrals along the vorticity discontinuities (see Zabusky, Hughes &
Roberts 1979). The flow evolution, therefore, can be reduced from the two-dimensional
Euler’s equations to the one-dimensional advection of the contours. Zabusky et al.
(1979) introduced this type of formulation, called the method of ‘contour dynamics’.
Later, Dritschel (1988) introduced ‘contour surgery’ so that the small scales that
appeared in contour dynamics computation could be limited through a ‘cut-off’ scale.

The method of contour dynamics/contour surgery, has been used in many
applications; for a review see Pullin (1992). Figure 2 is a summary of the models most
relevant to the present study.
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Figure 1. A turbulent boundary layer above a solid wall (Falco 1977). The turbulent boundary
layer has been filled with ‘smoke’ composed of small oil particles which appear white by
reflecting the light. The dark regions represent the mainly irrotational outer-region fluid. The
three lower arrows point to regions of irrotational fluid which have been entrained into the
boundary layer (cf. figure 9). The upper arrow indicates what appears to be the breakdown of
a wave on the boundary layer into a curl of detrained fluid (cf. figure 11).
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Figure 2. Two-dimensional inviscid uniform-vorticity models. (a) Stern & Pratt (1985);
(b) Pullin (1981); (c) Atassi et al. (1997); (d) Stern (1991). In each case, the initial condition
is shown. The solid line marks the boundary between rotational ω = 1 and irrotational ω = 0
fluid.

In studying the propagation of vorticity fronts above a wall, Stern & Pratt (1985)
found that wave breaking occurs when the front slope exceeds a critical value.
Here, ‘wave breaking’ is said to occur when the initially single-valued vorticity
interface L(x, t) (see figure 2a) becomes multi-valued due to overturning of irrotational
fluid. Despite numerical uncertainty due to low resolution of the numerical method,
there was strong evidence that, with the vorticity front as the initial condition,
the overturning occurs when max ∂L(x, 0)/∂x exceeds a critical value between 0.4
and 0.75. They also showed wave breaking for an isolated bell-shaped disturbance
(L = 1 + 0.5(1 + 100x2)−1) when its maximum ∂L/∂x is sufficiently large and found
that the time to breaking is independent of the distance of the lower boundary (wall)
from the interface. Subsequent to breaking, irrotational fluid is engulfed into the
rotational layer in a very slender crevice.
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When the vorticity interface distorts and becomes multi-valued, the distortion may
quickly grow intrusively or extrusively such that a filament of fluid with one value of
vorticity invades a body of fluid with a different vorticity. This is called filamentation.
Pullin (1981) studied the evolution of a wall-bounded vortex layer of mean thickness
d due to a finite-amplitude periodic disturbance of wavelength λ and waveheight δ

(figure 2b). Filamentation is found to be intrusive and occurs when

δ

λ
�

1

4π
[1 − exp (−4πd/λ)]. (1.1)

Notice that the amplitude normalized by λ is a measure of wave steepness, so (1.1)
indicates that filamentation occurs when the wave slope is above a certain value.

Atassi, Bernoff & Lichter (1997) studied the interaction of a wall-bounded shear
flow with a point vortex, (figure 2c). In Atassi, Bernoff & Lichter (1998), the initial
conditions (namely, the strength and initial height of the vortex) were chosen such
that the initial velocity field induced on the shear flow was approximately invariant
except for the x-length scale. Short disturbances propagated slowly and so would
remain localized near the vortex, allowing it to wind a thin spire of vortical fluid up
and out of the shear layer. On the other hand, if the initial conditions were chosen
to produce long disturbances, then a finger of irrotational fluid would be drawn into
the shear layer which would align with the wall, implying that the wall (i.e. the image
vorticity) plays a role in entrainment.

Stern (1991) (figure 2d ) studied the interaction of a shear flow with an eddy.
Typically, the eddy moves toward the shear flow, and a tongue of rotational flow
from the shear flow emerges to wind around the eddy, drawing it and part of the
surrounding irrotational fluid into the shear flow.

In the present study, we are interested in the mechanisms of mixing between
an irrotational outer region and a boundary layer. We study the evolution of the
interface (between irrotational and rotational flow) following an initial disturbance.
We uncover a process which can entrain irrotational fluid into the boundary layer
and through which the boundary layer loses fluid into the outer region. The model
which describes these processes is developed in the following section. Our numerical
method is described in § 3. Results are presented and discussed in § 4. The conclusions
and our plans for future research are in § 5.

2. Formulation
Reynolds number can be interpreted as the ratio of the time scale tν ∼ H 2/ν on

which vorticity diffuses to the time scale tΓ ∼ H 2/Γ on which vorticity is convected
inviscidly by the velocity induced on it (by the Biot-Savart law) due to regions of
vorticity of strength Γ . So, for turbulent flow, where Re � 1, the viscous time scale
is much longer than the inviscid time scale, suggesting that boundary-layer vorticity
becomes mixed with the outer flow mainly through inviscid interactions. Thus, we
consider the model shown in figure 3, in which the flow is divided into two regions: the
outer region of irrotational flow with a free-stream velocity U , and the inner region
with constant vorticity above a wall. The two regions are separated by an interface
located at y = H (x, t), which extends from −∞ upstream to +∞ downstream. The
height H (x, t) of the interface denotes the boundary layer thickness.

An inviscid vortex layer of constant height H∞ would remain unchanged unless
disturbed in some manner. We have used two types of initial disturbance. In one, a
point vortex is introduced above an initially flat boundary layer (Atassi et al. 1997,



146 M. Sun and S. Lichter

D0: ω = 0

y

D0: ω = 1

w

h

H (x, 0)

x

Figure 3. A initial Gaussian bump of height h and width w on the interface. The
undisturbed interface has a constant height H∞.

1998). In the other, the initial disturbance is a local thickening of the boundary
layer. Our results have shown that either of these two types of initial conditions
gives qualitatively similar flow evolution. However, the bump initial condition gives
a cleaner view of the evolution process (for example, entrainment into the boundary
layer is accompanied by fewer small-scale waves). Therefore (as shown in figure 3),
most of our studies used a Gaussian bump (parameterized by its height h and its
width w) as the initial condition, and these results are presented here.

The coordinate system places the x-axis along the wall pointing downstream and
the y-axis perpendicular to the wall. Variables are non-dimensionalized using the free-
stream velocity U , and the initial height of the layer H∞, such that the undisturbed
vortex layer height, the vorticity in the boundary layer and the speed of the initial
uniform flow in the outer region all have magnitude one.

The stream function obeys ∇2Ψ =1 within the vortical layer 0 < y < H (x, t) and
∇2Ψ = 0 in the outer region H < y < ∞ with boundary conditions Ψ (x, ∞, t) = 0 and
Ψ (x, 0, t) = constant. The solution to this problem is

Ψ (x, y, t) =
1

4π

∫ ∞

−∞
dξ

∫ H (ξ,t)

0

dη ln
(x − ξ )2 + (y − η)2

(x − ξ )2 + (y + η)2
, (2.1)

where image vortices have been introduced to satisfy the boundary condition at the
wall. By expressing H (x, t) as single-valued function of the arclength, s, it is easy to
prove that (2.1) and the following equations are valid even if H is a multi-valued
function of x. Thus, for any point on the contour H (x, t), the velocity components
u = ∂Ψ/∂y and v = −∂Ψ/∂x satisfy

u =
dx

dt
, v =

dH

dt
, (2.2)

where

u =
1

4π

∫ ∞

−∞
dξ ln

{(x − ξ )2 + [H (x, t) − H (ξ, t)]2}{(x − ξ )2 + [H (x, t) + H (ξ, t)]2}
[(x − ξ )2 + H 2(x, t)]2

,

(2.3)

v =
1

4π

∫ ∞

−∞
dH (ξ, t) ln

(x − ξ )2 + [H (x, t) − H (ξ, t)]2

(x − ξ )2 + [H (x, t) + H (ξ, t)]2
, (2.4)
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and where

H (−∞, t) = H (∞, t) = 1. (2.5)

See Atassi et al. (1997) for further details.

3. Numerical method
In the contour dynamics/contour surgery numerical method that we use, the

interface between the rotational and irrotational flow is discretized into a set of
nodes. By fitting a cubic spline to these nodes, an analytical approximation of the
interface H = {x(s), y(s)} is found from which the arclength si and the local curvature
κ(si) at each node can be obtained (for details, see Zabusky et al. 1979). The positions
of the nodes on the contour have to be readjusted in a smooth way such that the
set of nodes can approximate the interface contour with reasonable resolution. So, at
every time step, the internodal distance is adjusted according to the magnitude of the
local curvature of the interface contour H (x, t) as follows. Starting from one end of
the contour, we would like to set the internodal distance, hi ≡ si + 1 − si to be inversely
proportional to the local curvature, κi . But problems arise when a high-curvature
region preceeds a low-curvature region (see Dritschel 1988, for details).

To consider the effect of high-curvature regions, a non-local average curvature is
defined,

κ̄i =
∑

j

dj |κj |
e2
ij

/∑
j

dj

e2
ij

(3.1)

where dj = ‖xj +1 − xj ‖ is the straight-line distance between adjacent modes j and
j +1, κj is the local curvature at node j computed by the cubic spline interpolation,
eij = ‖xi − 1

2
(xj + xj +1)‖ is the distance between node i and halfway between nodes

j and j + 1, and the sum is over all nodes. It is easily seen that the nodes that have
large eij contribute little to the average curvature.

A new curvature for each node can then be determined by

κ̃i = max[κi, κ̄i], (3.2)

from which a new internodal distance can be found,

h∗
i =

c1

|κ̃ i |
, (3.3)

where c1 = 0.2. This h∗ must satisfy

hmin <h∗ <hmax (3.4)

and

(1 − r)hi−1 < h∗ < (1 + r)hi−1, (3.5)

where the parameter r is 0.3. The lower limit, hmin, prevents the number of nodes from
growing too rapidly. The upper limit guarantees a minimum accuracy and also helps
prevent the contour from being under-resolved. Equation (3.5) allows the internodal
distance to change by at most ±30% from one pair of points to the adjacent pair.
This control distributes the nodes smoothly on the contour.

After all the nodes have been adjusted, their location along the interface {s̃i | 0 �
i � Ñ} can be used by the cubic spline representation for H to obtain the location
of the new nodes {x̃(s̃i), ỹ(s̃i)}, i = 0, . . . , Ñ , where Ñ is the updated number of
nodes.
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Figure 4. The integration region can be viewed as the superposition of the undisturbed vortex
layer of unity vorticity and the disturbed region BL′ of patches of + 1-vorticity (above y = 1)
and −1-vorticity (below y = 1).

The Euler equation does not allow contours to touch or cross (Baker & Shelley
1990). However, it becomes computationally difficult to maintain contours as they
become arbitrarily close. Furthermore, the assumption underlying the use of Euler’s
equation, namely that viscous effects can be neglected, breaks down at these small
length scales. So, we impose an artificial local viscosity by merging or breaking
contours separated by less than a cut-off distance δ. In our problem, the cut-off scale
was set, after trial-and-error, to be one-third of the minimum internodal distance.
These small scales do not accumulate a significant amount of vorticity. This form of
contour surgery is performed for the following situations. First, when the distance
from a node to a non-adjacent point on the same contour is less than δ, the contour is
broken into two at this point. Second, when the distance from a node on one contour
to a point on a different contour is less than δ, we merge these two contours at this
point provided that the two contours bound the same value of vorticity.

The cut-off was most frequently required during entrainment when, as will be seen
from the simulations, there is a slender neck of irrotational fluid which extends into
the boundary layer. This slender neck may break up into a series of small fragments
as the two sides of the neck approach to within the cut-off distance. The frequent use
of contour surgery causes a numerical error, discussed below, in which boundary-layer
volume, which should be invariant, is lost.

The positions of the nodes are updated by integrating (2.2) using the Adams
predictor–corrector method. The u and v velocities are given by the spatial integrals
(2.3) and (2.4). Note that the spatial integration is throughout the entire vortex layer.
This layer can be viewed as the superposition of the undisturbed vortex layer of
constant height and unity vorticity plus a disturbed region BL′, as shown shaded
in figure 4, of patches of + 1-vorticity (above y =1) and −1-vorticity (below y = 1).
Thus, the numerical integration needs to be carried out only over the limited domain
BL′ in which the boundary layer is disturbed,

u =

{
y if y < H∞ = 1

1 if otherwise

+
1

4π

∫
BL′

dξ ln
[(x − ξ )2 + (H − H ′)2][(x − ξ )2 + (H + H ′)2]

[(x − ξ )2 + (H − H∞)2][(x − ξ )2 + (H + H∞)2]
, (3.6)

and

v =
1

4π

∫
BL′

dξ
∂H ′

∂ξ
ln

(x − ξ )2 + [H − H ′]2

(x − ξ )2 + [H +H ′]2
(3.7)
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Figure 5. The numerical error was monitored by tracking two invariants. (a) The relative error
|ABL′ (t) − ABL′ (0)|/ABL′ (0), where the integral ABL′ (t) =

∫
BL′(t) dA is evaluated only over the

volume that is perturbed above or below the otherwise uniform boundary layer thickness, as
shown in figure 4. (If the total initial area of the computational domain had been used as the
reference area, the values of the relative error would be much smaller.) (b) The relative error of
the first moment of vorticity |||η(t)||2 − ||η(0)||2|/||η(0)||2, where ||η(t)||2 =

∫
ydA, and where, as

in (a), the integral is taken only over BL′. Curve e1 is the worst case for entrainment, figure 8,
which occurs when the entrained volume is small and thin; e2 shows typical entrainment,
corresponding to figure 9; d1, corresponding to figure 11, is typical of the higher errors during
detrainment, though some initial conditions, e.g. (h,w) = (2.0, 0.2) shown as d2, have lower
errors; the error shown by curve w is for the case shown in figure 7 which results in neither
entrainment nor detrainment but only waves. In (a) curves e2 and w are indistinguishable from
the time-axis.

where H ′ =H (ξ, t), and y = H (x, t) for nodes on the contour. The limited extent of
BL′ greatly speeds calculation. Furthermore, the use of the analytic solution for the
undisturbed vortex layer extends the computational domain over the entire interval
|x| < ∞.

For this two-dimensional inviscid incompressible boundary layer, vorticity is an
integral invariant,

∫
ω dA =constant. As the value of the vorticity ω is constant

throughout the domain of integration, the integration volume itself is invariant. The
first moment of vorticity is also an integral invariant. (See Batchelor 1967 for a
discussion of vorticity invariants.) Numerical fidelity is monitored by tracking the
error in these two quantities. In figure 5(a), the error is normalized with the volume
of the initial disturbance. In all cases of entrainment, this measure of relative error
is less than about 0.6%. Even this magnitude of error is unusual and occurs only for
entrainment volumes which are exceedingly thin; typically, this measure of error is
less than 0.2% during entrainment. Errors during detrainment are typically larger:
d1 shows the worst case in which the error reaches 9% by the time of 24. These
large errors are due to regions of high curvature and to the annihilation of fine
filaments whose thinness is below the cut-off distance δ. Figure 5(b) shows that for
both entrainment and detrainment, the error in the first moment of vorticity is always
less than 1%. When only waves are generated, as in figure 7 below, the error in
either measure never rises above about 0.1%. A more stringent test is to normalize
the accumulating error using the entrained or detrained volume, see figure 6. For
entrainment, errors are typically less than about 0.5%, with larger errors only when
the entrained volume is small, as in e1. Errors during detrainment can be small,
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Figure 6. The change in the volume of the boundary layer normalized with the maximum
entrained (or detrained) volume, maxAe/d , provides another measure of error. See the caption
of figure 5 for the definition of the volume of the boundary layer ABL′ (t) and the labelling
of the curves. Detrainment shows the largest errors due to the small volume of fluid which is
detrained from the boundary layer.

as shown by d2. Typically, however, detrainment, as is apparent from figure 11, is
accompanied by very slender filaments which accumulate larger errors, as shown
by d1. Both the high curvature of the filament tips and the smallness of detrained
volumes lead to the larger values of the error. However, as for entrainment, the
error decreases as detrained volume increases. The time evolution of detrainment, as
exemplified in figure 11, is similar for cases with both smaller and larger values of
the error; this suggests that the detrainment process may not be qualitatively altered
in the presence of the larger values of this particular measure of error. It must be
expected, though, that the interface shape near regions of high curvature will not be
accurately simulated, and that fine filaments, with thicknesses less than the cut-off
value, will be entirely annihilated.

4. Results and discussion
The interface is initially perturbed by a Gaussian of width w and height h,

y = 1 + h exp(−(2x/w)2), (4.1)

centred at x = 0. For some initial disturbances, i.e. for some (h, w), the topology of the
boundary layer will not change. In figure 7, for (h, w) = (0.5, 4.47), the downstream
side of the bump steepens, and irrotational fluid dents into the boundary layer. For
times t � 12, the cleft flattens, leaving waves dispersing on the interface.

For other initial disturbances, the topology of the boundary layer will be altered
such that the initially singly connected boundary layer envelopes irrotational fluid
within it. In figure 8 the initial bump is smaller and narrower, (h, w) = (0.4, 1.0).
The downstream side of the disturbance steepens leading to overturning and the
production of a crevice pointing into the vortex layer (at t = 4). The interface and
the irrotational fluid within the crevice have been folded through nearly 180◦, see
t = 8. The crevice continues to stretch, dragging irrotational fluid deep into the
boundary layer. At t = 12, the tip of the irrotational fluid has reached y = 0.4, and the
crevice has a length of approximately 4, i.e. 4 times the boundary layer thickness. At
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Figure 7. The evolution of the interface subject to an initial disturbance in the form of a
Gaussian bump of height h = 0.5 and width w = 4.47, for six times 0 � t � 20. The downstream
coordinate is x. The undisturbed boundary layer height is unity. Note the stretched scale in x.
A wave is generated on the interface and no entrainment occurs.
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Figure 8. As figure 7 but for an initial disturbance (h,w) = (0.4, 1.0). Irrotational fluid from
the outer region is drawn into the boundary layer in a narrow crevice which pinches off at
t ≈ 15. The entrained fluid is completely enveloped within the boundary layer, as can be seen
at t = 16, 20.

approximately t = 15, the crevice of irrotational fluid is pinched off and is enveloped
within the boundary layer. This process of drawing in and enveloping irrotational fluid
within the boundary layer is called entrainment. That is, entrainment is associated
with a change of topology from a simply connected boundary layer to one which is
multiply connected. The top portion of the crevice convects downstream with nearly
the free-stream speed, while portions close to the wall are proportionally slower.
Hence, the two ends of the bolus are stretched: at t =16, the crevice has an extent in
the x-direction of approximately 6; subsequently, at t = 20, the length of the entrained
crevice is about 8.

Figure 9 shows the evolution of the interface with an initial disturbance of
(h, w) = (0.8, 2.0). As in the previous case, the irrotational fluid is folded and drawn
deep into the boundary layer by the overturning bump. At t = 8, the tip of the crevice
of irrotational fluid has reach down to y =0.3. At approximately t = 14.5, the crevice
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Figure 9. As figure 7 but for an initial disturbance (h,w)= (0.8, 2.0). Entrainment of
irrotational fluid into the boundary layer occurs as in figure 8, though here the volume
of entrained fluid is larger.
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Figure 10. Transition boundary of entrainment. Squares show the initial disturbances for
which entrainment occurs; circles show those for which no entrainment occurs. The dotted
line is the transition boundary from Pullin (1981), (1.1). Triangles show initial disturbances for
which detrainment occurs.

pinches off into a bolus of entrained fluid. This bolus is stretched so that at t = 16
its length along the x-direction is approximately 7. By t = 20, most of the entrained
fluid lies in a thin layer aligned with the flow direction near y = 0.25. The upper
part of the bolus has fragmented into a chain of small pieces which drift upward to
rejoin the upper layer. Compared with the case in figure 8, the entrained volume of
the irrotational fluid in this case is much larger and the bolus of entrained fluid lies
deeper within the boundary layer.

Figure 10 presents the stability boundaries for entrainment. The abscissa and
ordinate are the width w and the height h, respectively, of the initial disturbance.
The squares show those disturbances which result in entrainment; circles show cases
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Figure 11. Detrainment of rotational fluid out of vortex layer for initial disturbance
(h,w) = (0.5, 0.1414). Results are shown for six times for 8 � t � 44. At t = 44, the detrainment
structure is magnified for a better view.

with no entrainment. Pullin (1981) and Pullin et al. (1989), in studying a vortex layer
with a periodic initial disturbance, find that a minimum amplitude of disturbance is
required for filamentation to occur. In order to compare the results from our compact
disturbance to those of Pullin, we set λ=2w. For narrow Gaussian disturbances, i.e.
w � 2, entrainment is consistent with the linear stability boundary found by Pullin
(1981), (1.1). For broader disturbances, i.e. w � 2, the instability limit no longer falls
along the linear stability boundary, but lies near the line h/w ∼ 0.16.

The triangles in figure 10 mark disturbances which result in another phenomenon,
shown in figure 11. The initial disturbance, (h, w) = (0.5, 0.1414), has the same height
as in the case in figure 7 but is very narrow. The crevice due to the steepening of the
downstream side of the initial disturbance is very shallow and does not pinch off at
later times. Instead, the initial bump (now a slender finger intruding into the outer
layer) develops waviness and collects portions of rotational fluid into a small bolus
which is pinched off at a later time (t =44) causing the rotational fluid inside to be
left surrounded by the outer layer. This process is what we call detrainment. That
is, a region of rotational fluid detaches from the bulk of the boundary layer to be
enveloped by irrotational fluid.

As can be seen from figures 8 and 9, the entrained volume is slender. For example,
its aspect ratio in figure 9 at t = 20 is approximately 1:100. Despite its thinness, the
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Figure 12. The volume of entrained fluid for four different widths of the initial Gaussian.
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Figure 13. For the case shown in figure 9, the initial distribution of five chains of fluid at t = 0
which are subsequently entrained is shown in (a). At t = 16, after being folded and stretched,
the markers are arrayed as in (b). The heavy line in each figure shows the position of the
interface and the chain farthest from it is divided into segments by Lagrangian markers.

entrained bolus can contain a significant amount of irrotational fluid. Figure 12 shows
the volume of entrained irrotational fluid as a function of initial height h for four
different values of initial width w. Here, the volume is defined in terms of the area
of the bolus of irrotational fluid when it first pinches off from the interface and is
enveloped by the boundary layer. A value of unity indicates that the bolus contains a
volume equal to that in a square whose sides are of length equal to the boundary layer
thickness. The volume increases with the height h, but decreases with the width w.

From where does the entrained fluid arise? To answer this question, chains of
Lagrangian particles were arrayed in the irrotational fluid and their positions tracked.
For the case shown in figure 9, figure 13(a) shows the initial position of the five chains
which at t = 16 were entrained into the bolus. For the chain furthest from the interface
in figure 13(a), Lagrangian markers, which break the chain into eleven segments, are
also shown. The entrained chains are folded, see figure 13(b), at approximately the
positions where the initial lines have maximum slope.
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Figure 14. The length l, normalized with respect to initial length l0, as a function of time
for each segment between the Lagrangian markers of the fluid chain shown in figure 13: the
segments are numbered according to their initial locations (as shown in figure 13a) from left
to right and top to bottom along the chain. The result for Segment 1 uses the ordinate on
the left. For comparison, the inset shows how line segments with the same initial orientation
would be stretched by a uniform shear flow of unity vorticity.

The fluid within the entrained volume is not only folded, but also stretched. To
quantify the stretching, we measure the length of the line segments between pairs of
Lagrangian markers. Figure 13 explicitly shows those markers for one of the fluid
chains. Figure 14 shows the length l of each of the eleven segments, normalized with
respect to its initial length l0. For comparison, the inset shows how line segments
with the same initial orientation would be stretched by a uniform shear flow of unity
vorticity: after an brief interval of compression, all segments are linearly stretched.
The segments in the boundary layer flow also undergo an initial compression followed
by stretching. However, in general, by time t = 20 most segments have been folded
into a thin layer centred at y = 0.25 for which the u-velocity is nearly constant, and
hence stretching ceases. Segment 1 lies in the upstream tail which curves upward and
so the relative velocity between its upper and lower ends maintains the stretch.

Figure 15 shows the flow field at time t = 20 for (h, w) = (0.8, 2.0). Streamlines are
shown by contours with arrows; curves of constant u-velocity are labelled with the
value of u, and the interface is superimposed as a heavy solid curve. As entrainment
occurs, the entrained fluid, initially at near free-stream speed, decelerates to the speed
of the surrounding flow. This is just what one might expect from mixing-length
arguments. Consequently, the presence of the entrained fluid can hardly be detected
by looking at the streamlines. On crossing into the entrained volume, lines of constant
u-velocity are kinked such that the u-velocity appears constant for fixed x-location.
However, these kinks are actually quite small: note that in figure 15 the y-scale has
been expanded by a factor of approximately 50 in comparison with the x-scale.
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Figure 15. The flow field near the entrained fluid region at t = 20 for the case with
(h,w)= (0.8, 2.0) (see figure 9). The interface contour (heavy solid curve) has superimposed u-
velocity contours (solid curves) and streamlines (curves with arrows).

Pullin studied the constant-vorticity boundary layer disturbed by waves, rather
than the compact disturbances as here (Pullin 1981; Pullin et al. 1989). He found
that, if of sufficient steepness, the waves would increase in amplitude and evolve such
that they were rounded at their crests and narrow at the troughs, the angle of the
filament was about 15◦, the fronts of bulges propagated faster than their backs, and
the wave speeds were slightly less than the free-stream velocity. All these findings are
in agreement with measurements of bulges in a turbulent boundary layer (Kovasznay,
Kibens & Blackwelder 1970). To further test the similarity between the entrainment
process and boundary-layer bulges, we compared the v-velocity field of the evolving
disturbance with measurements in the turbulent boundary layer as shown in figure 16.
Our data are conditionally sampled and normalized in the same manner as the
turbulent data. Specifically, a numerical trigger probe was placed at a height yD .
When this probe detected the passage of the contour separating irrotational from
rotational fluid, the v-velocity is measured at a second probe at height y. Each line
of data corresponds to a different value of yD conditioned on being at the ‘back’ or
‘front’ of the disturbance. Passing from irrotational to rotational flow (rotational to
irrotational) denotes the front (back) of the disturbance. The y-scale was normalized
with respect to the boundary-layer height and the v-velocity scale was normalized with
respect to the free-stream velocity. The heights of the trigger probes, relative to the
boundary-layer height, in both sets of data are the same, so the data in figures 16(a)
and 16(b) can be compared line-by-line. Note, though, that Kovasznay et al.’s data are
for the ensembled-averaged ‘bulge’, while the present data are for a single disturbance
(h, w) = (0.1, 2.0) at time t = 2. The two sets of data, one from the turbulent boundary
layer and the other from the present model, are similar in form and scale. In particular,
on the backs of the disturbance: (i) non-zero velocities range over −1.0 � Y � 1.0,
(ii) the maximum magnitudes fall near Y = 0, (iii) both positive and negative velocities
occur, (iv) the maximum positive velocity is about 0.01, and (v) the minimum value
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Figure 16. Conditionally averaged v-velocity profiles: (a) results from Kovasznay et al. (1970)
and (b) from the current study. In all cases, the abscissa, Y = y − yD , has been normalized
with respect to the boundary-layer thickness, where yD is the height of the trigger probe which
detects the passage of the contour separating vortical from irrotational fluid. On detection,
a second probe records the v-velocity at height y. The measured velocity (minus the mean
v-velocity) is normalized in all cases with respect to the free-stream velocity and shown as
V . Kovasznay et al.’s data are for the ensembled-averaged ‘bulge’. The present data are for a
single disturbance (h,w) = (0.1, 2.0) at time t = 2. Each line corresponds to a different value
of yD conditional on its being on a back (upper two plots) or a front (lower two plots) of a
disturbance.

of the negative velocity is about −0.01. On the fronts, both sets of data show:
(i) non-zero velocities in the range −1.0 � Y � 1.0, (ii) the maximum magnitudes fall
near Y = 0, (iii) almost exclusively negative velocities with the exception of one line
with small positive velocities, and (iv) the minimum value of the negative velocity is
about −0.02.

5. Conclusions
This work considers a model high-Reynolds-number boundary layer. It is shown

that a local thickening of the boundary layer breaks down into a wave field plus,
if the initial disturbance is steep enough, h/w � 0.16, a volume of entrained fluid.
The entrained fluid is drawn from the irrotational outer region and folded into
the boundary layer, first forming a crevice which points nearly normal to the wall
and subsequently is stretched along the flow direction. The entrained volume of
irrotational fluid can become very slender, reaching aspects ratios in which its width
is only O(0.01) of its length. The attributes of folding and stretching suggest that the
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entrainment process would facilitate molecular mixing. The bolus of entrained fluid is
completed engulfed within the boundary layer, often at a deep level, within the 25%
of the boundary layer closest to the wall. The volume of entrained fluid is large, of
O(1).

Relatively thin initial disturbances lead to detrainment, in which vortical fluid
from the boundary layer detaches from the bulk of the boundary-layer fluid and
becomes surrounded by the irrotational fluid of the outer region. Detrained volumes
are typically much smaller than entrained volumes.

The ‘bulges’ seen in turbulent boundary layers appear similar to these model
disturbances. Here, we show that the disturbances generate conditionally averaged
v-velocity profiles which are similar to those found in the turbulent bulges. The
comparison is not strictly valid, as the turbulent data are for the ensemble of large
and small, and young and old structures which pass the measuring stations, while
our results are for a single realization. To generate a set of disturbances equivalent
to Kovasznay’s bulges would require generating the disturbances from a set of
background fluctuations, rather than from a finite-amplitude initial condition, as
done here.

This work used the Lagrangian technique of contour dynamics/contour surgery
which explicitly tracks the contour separating vortical from irrotational fluid. Eulerian
measures, such as the velocity field, would not so clearly differentiate the entrained
volume. Furthermore, the slender shape of the entrained volume would make it easy
to overlook in physical measurement or in numerical simulations which present only
streamlines.

The ultimate objective of this work is to better understand transport into the
high-Reynolds-number boundary layer. The results of this work suggest that this
model may capture some of the features of the mechanism by which transport into
and out of the high-Reynolds-number boundary layer occurs. The model has only
two parameters, namely the height and width (h, w) of the initial disturbance. The
choice of (h, w) sets whether entrainment, detrainment or only waves will evolve. One
can imagine, on looking at flow visualizations such as figure 1, that the ragged edge
of the boundary layer is a superposition of these three types of disturbances. If so,
transport coefficients into the boundary layer, and the velocity fluctuations, Reynolds
stresses and the mean (log and wake) profiles near the outer edge of the boundary
layer might be described by the collective action of the entrainment, detrainment and
waves contained in this model. Our future work will explore these possibilities.
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gratefully acknowledged.
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